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Secondary instability of a temporally

growing mixing laver

by Ralph W. Metcalfe, Steven A. Orszag, Marc E. Brachet, Suresh Menon,

and James J. Riley

Flow Research Company, Kent, Washington 98032

The three-dimensional stability of two-dimensional vortical states of planar
mixing layers is studied by direct numerical integration of the Navier-Stokes
equations. Small-scale instabilities are shown to exist for spanwise scales at
which classical linear modes are stable. These modes grow on convective time
scales, extract their energy from the mean flow, and persist to moderately low
Reynolds numbers. Their growth rates are comparable to the most rapidly growing
inviscid instability and to the growth rates of two-dimensional subharmonic
(pairing) modes. At high amplitudes, they can evolve into pairs of counter-
rotating, streamwise vortices, or "ribs", in the braids, which are very similar
to the structures observed in laboratory experiments. The three-dimensional
modes do not appear to saturate in quasi-steady states as do the purely
two-dimensional fundamental and subharmonic modes in the absence of pairing.

The subsequent evolution of the flow depends on the relative amplitudes of the
pairing modes. Persistent pairings can inhibit three-dimensional instability
and, hence, keep the flow predoéin;ntly two~dimensional. Conversely, suppres-
sion of the pairing process can drive the three-dimensional modes to more
chaotic, turbulent-like states. An analysis of high-resolution simulations of
fully turbulent mixing layers confirms the existence of riblike structures and

that their coherence depends strongly on the presence of the two-dimensional

pairing modes.
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1. Introduction
Free shear flows, like those of mixing layers and jets, differ from wall-
bounded flows in that they typically have {nflexional mean velocity profiles
) and, hence, are subject to inviscid instabilities. Thus, it may be thougut
\ that the process of transition to turbulence in free shear flows would be
directly amenable to analysis. Indeed, observations by Winant & Browand
j (1974); Brown & Roshko (1974); Wygnanski, Oster, Fiedler & Dziomba (1979);
Ho & Huang (1982); Hussain (1983a), and others show the central role played by

two-dimensional dynamic processes, at least through transitional regimes, in

o
3 these flows, While three-dimensional small scales are observed (Miksad 1972;
.
[ Bernal, Breidenthal, Brown, Konrad & Roshko 1979), they may not necessarily
- destroy the large-scale two-dimensional structures (Browand & Troutt 1980). 1In
; contrast, studies of wall-bounded flows have ecphasized the central role of
: three-dimensional effects in the breakdown to turbulence.
In this paper, we investigate the interaction between linear and nonlinear
two- and three-dimensional flow states that can arise during the early stages
; of evolution of a temporally growing turbulent mixing layer, It is shown that
- certain two-dimensional, nonlinear states (coherent, spanwise vortical modes)
; are strongly unstable to small, :hree-dizensional perturbations, and that these
; perturbations can evolve into streamwise, counterrotating vortices similar to
Fﬁ those observed experimentally (Bernal 1981) ané modeled analytically
EZ (Pierrehumbert & Widnall 1982; Lin & Corcos 19384). We find that the two- or
Ei three-dimens}onal character of the ;ixing layer depends crucially on the
oy initial conditions, as there is a close competition between the various modes
l.,,'
té of instability.
The approach followed here is similar to that used by Orszag & Patera (1380,
?: 1983) in their study of secondar: instabilities in wall-bounded {lows. The
;5
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parallel laminar flow is perturbed initially by either a linear or a finite-
amplitude two-dimensional disturbance that is allowed to evolve and to saturate
in a quasi-steady state. The stability of this finite-amplitude vortical state
’ to both subharmonic (pairing) two-dimensional modes and smaller-scale three-~
dimensional modes is then studied by numerical solution of the full three-
dimensional time-dependent Navier-Stokes equations. To relate these simulations
i to the evolution of a turbulent mixing layer, we also examine the interaction
between the evolving two-dimensional modes in their linear and nonlinear states
and a broad-band, three-dimensional background noise spectrum.

The character of the pairing instability was first explained theoretically
) by Kelly (1967) and numerically by Patnaik,; Sherman & Corcos (1976) and Collins
(1982) for stratified flows, and by Riley & Metcalfe (1980) and Pierrehumbert &
Widnall (1932) for unstratified flows. The nature of the two-dimensional

vortical pairing as well as a model for streamwise vortical motion have been

investigated numerically and theoretically (Corcos & Sherman 1984; Corcos & Lin
1984; Lin & Corcos 1984). Experimentally, coherent pairing of large-scale
vortical structures in turbulent mixing lavers at high Reynolds numbers was
identified by Brown & Roshko (1974). Significant secondary three-dimensional
instabilities in these flows have been observed by Breidenthal (1981) and Bernal
(1981). The importance of these instabilities and their sensitivity to up-
strean perzurbations has been demonstrated experimentally by Hussain & Zaman
(1978), Oster & Wygnanski (1982), and Ho & Huang (1982) among others. There is
an excellent and comprehensive teview of the very extensive literature on this
topic by Ho & Huerre (1984).

Pierrehumbert & Widnall (1982) examined the linear two- and three-
dimensional instabilities of a spatially periodic inviscid shear laver in a

study closely related to the present one. Thev considered the stability
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characteristics of the model family of two-dimensional vortex-modified mixing

layers with velocity fields,

u = sinh z/[cosh z = p cos x]

(1.1)

w=- psin x/{cosh z = p cos x]

(Stuart 1967) for 0 < p < 1,T and studied subharmonic pairing instabilities and
a "translative"” three-dimensional instability. 1In contrast, we consider here
both the linear and nonlinear stability characteristics of time-developing
viscous shear layers. The three~dimensional secondary instability we study is
both the analog of the translative instability and a generalization of the
instability analyzed by Orszag & Patera (1983) for wall-bounded flows. 1In the
nonlinear state, this instability is manifest as the streamwise, counterrotating

vortices (Bernal 1981l) or "ribs" (Hussain 1983a) seen in laboratory experiments.

2. Numerical methods

The Navier-Stokes equations are solved in the form

-
%‘g--;xa-v'n+_v72\7 (2.1)

t+ Note that for o <<.1, the basic flow state (1.1) is of the form
tanh z x + .0 Re [e"™ v(z)]. At wavenumber a = 1, there are no fundamental
two-dimensional instabilities that can compete with the subharmonic (a = 1/I)
and secondary instabilities. This flow state is an inviscid neutrally
stable perturbation of the mixing layer tanh z x. In contrast, the results
to be reported in §3 involve unstable fundamental perturbations to the
mixing layer.




-
f -

-+ - -+
where w = V x v is the vorticity and T =p +« 12 jvi  is the pressure head.
Periodic boundary conditions are applied in the streamwise, x, and spanwise, vy,

directions, where

’ vix + 4n/a,y,z,t) = ;(x,y,z,t) (2.3)

- -
vix,y + 21/8,z,t) = v(x,y,z,t) ,

-+ -
while the flow is assumed quiescent (v + U x; U_ constants) as z + = Note

L g =

that the assumed periodicity length B is 47/a (or 8n/a) to accommodate both the

fundamental mode, with x-wavenumber &, and its subharmonic, with x-wavenumber
/2 (or &/4).t

Our simulations are of a temporally growing mixing layer. By avoiding the
requirement of imposing inflow-outflow boundary conditions, which is essential

in simulations of a spatially growing flow, a faster, more efficient code can

W e Y

be written. Thus, the temporally evolving mixing layer can be simulated at

higher Reynolds numbers and with better resolution than the spatial flow for a

given level of computer resources. As will be shown later, there are very

important linear and nonlinear dynamic features that are common to the two

* Pierrehumbert & Widnall (1982) point out that Floquet theory implies that the
Navier-Stokes equations ljnearized ab°§x 3 flow periodic jn x admit solutions
of the more general form v(x,y,z) = ¢ V(x,y,z), where V is periodic in x
with the same periodicity as the basic flow and vy is arbitrary. However,
Pierrehumbert & Widnall consider only the subharmonic and fundamental cases.
The analysis, which has not yet been done for more general vy, may be able
to address more precisely such phenomena as the "“collective interaction"
described in experiments by Ho & Nosseir (1981). Indeed, Busse & Clever
(1979) point out the importange of these general y-modes in Benard convec-
tion. The. present study is restricted to Y being a half-integer multiple
of the fundamental wavenumber, because our code is fully nonlinear with the
periodicity condition (2.3). Numerical simulations (Corcos & Sherman 1984)
with values of y different from ours indicate that the longest wave alloweld
by the grid will eventually dominate, although the details of the "pair:iny"
process may differ.
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flows, so a detailed analysis of numerical simulations of a temporaliy growing
flow can yield important insight into the evoliution in the spatial case. Thera
are also significant differences between the flows, which should be addressed
by future simulations using inflow-outflow boundary conditions.

We have used two independently written numerical codes for the simulations
described in this paper. 1In the first, the dynamical equations are solved using

pseudospectral methods in which the flow variables are expanded in the series

v(x.y z,t) = Z Z Z u(m n,p,t) exmax infBy T (z2), (2.4)

lmI<—M n] <5N p=0

where n and p are integers, while m is a half-integer when one pairing is
allowed and a whole integer if all pairing modes are excluded. Here Z = £(z2)
is a transformed z-coordinate satisfying Z = + 1 when z = + @ Two choices

of £(z) have been studied, viz.

Z = :anh-f: (lzl< ®, (2] < 1) (2.5)
and
2 = z Czl <= 12| <1, 2.6)
2 2
2+ 1

where L is a suitable scale factor. With these mappings, derivatives with

»r

respect to 2z are evaluated pseudospectraily using the relations

T -

; ™ o1l ,. .2 % -
( -y T (1 %) =5 (2.7)
-> ->
C N (2.8)
éz 'L \ YA

for (2.5) and (2.6), respectively,
Time stepping is done by a fractioral step method in which the nonlinear

terms are marched in time using a seconi-order Adams-Bashforth scheme while

T TS AT A e e e e o« TR’y . S,

pressure head and viscous effects are imposed Implicitly using Crank-Nicolson




differencing. This scheme is globally second-order-accurate in time, desnite

time splitting (Orszag, Deville & Israeli 1985), because the various split

operators commute in the case of quiescent boundary conditions at z = + =,
There is one further technical detail regarding this numerical method that

should be discussed here. Various Poisson equations, like

2

X @ end) Megla) (2l <=, (2.9)
dz
are solved by expansion in the eigenfunctions of dzldzz:
d2
— ek(z) 2 kkek(z) (lzl <= . (2.10)
dz
Thus, 1f
P
gl{z) = E gkek(z) R
k=0
then P
Mz2) z B (2) 1
Iz — 7 &,z (2.11)

S Acttead

We remark that this technique gives spectrally accurate solutions, despite the

fact that the continuous version of the eigenvalue problem (2.10) has only a

continuous, and hence singular, spectrum. Also, note that all the eigenvalues

.

kk are real and nonpositive; for both mappings (2.5) and (2.6), there are

€%

precisely three zero eigenvalues Al' A,, A,. One of these zero eigenmodes

2T 3

is physical, viz, el(z) = 1, but the other two are highly oscillatory and un-

‘..; .': ls

physical. Ihdeed, since the spectral (Chebyshev) derivative of T (2) vanishes

~ ” ]
except at Z = + 1, ez(Z) = TP(Z) 1s & zero eigenfunction of d°/dz"; Tp(Zj) = (-1)]
at the Chebvshev collocation points Zj = cos MWj,P. The third zero eigenmode

oscillates and prows roughly like z. When m = n = 0, the incompressibility
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constraint (2.2) requires that this mode of the z-velocity field vanish identi-
cally so there is no difficulty with the zero-pressure eigenvalues AI‘AZ'X3'

Comparisons of the behavior of linear Orr-Sommerfeld eigenmodes obtained
using mappings (2.5) and (2.6) show that (2.6) gives a superior representation
of these modes unless L is fine tuned, which is not convenient in the nonlinear
dynamic runs.t Some representative results are given in Table 1. Notice
that as @ increases, the optimal choice of map scale L decreases. Also,
notice that the accuracy of the eigenvalue is much more sensitive to L for the
hyperbolic tangent mapping (2.5) than for (2.6).

This nonlinear, time-dependent Navier-Stokes code has been tested for the
generalized Taylor-Green vortex flow (2,12) and also for linearized eigen-
function behavior, with satisfactory agreement being achieved with power series
in t (Brachet et al. 1983) and linear behavior, respectively.

The second code used in the simulations is sizilar to the one just
described, except that sine and cosine expansions in z were used instead of
Chebyvshev polynomials (2.4). Thus, the transverse domain extent is finite,
and care wmust be taken to identify possible interference effects. Comparisons
with results from the first simulations as well as simulations performed on

varying size domains has verified that such effects are small for the cases

t There is one case in which it seems that the hyrcerbolic tangent mapping (2.5)
is more convenient than the algebraic wapping (2.6). This flow is the gen-
eralized Tavlor-Green vortex flow that develops from the initial conditions

’
u{x,v,z,0) = sin x cos y/cosh™ z
-

v(x,y,2,0) = ~ cos x sin v/cosh™ z (2.12)
o .

The evolution of this flow seems best studied, either bv power series or ini-
tial value methods, using {(2.5) with L = 1, The time evolution of this free
shear flow is remarkably similar to that of the periodic Tavlor-Green vortex
(Brachet, Meiron, Orszag, Nickel, Morf & Frisch 19581).

wix,v,z,0)
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presented here. Aside from details of the input. output buifering routines aad
the size of the arrays used in the computations, the basic code structure 1is

similar to that described in Orszag & Pao (1974},

3. Two-dimensional instabilities

In this and the following sections, results are reported for the evolution

of initial velocity fields of the form

(z)eia(x+6) +

> - -
vix,y,z,0) = Uo(z) X + Re [AIOVIO

Dyl ixee)isy (3.1)
AV l2e

where 8 s the phase shift between the fundamental and subharmonic modes, and
$ is the corresponding phase shift of the spanwise mode. The laminar mean

profile is assumed to be Uo(z) = U, tanmh z/6i, an approximation to the mixing

layer profile, and vij(Z) is normalized so that max }vij(z)l = 1, Here, Gi is

the initial mean vorticity thickness.
The initial functions vij(Z) are normally chosen as the most unstable
eigenfunctions of the linear Orr-Sommerfeld equation for the appropriate wave-

numbers given in (3.1) (Michalke 1964).% 1In this representation, AlO is

the amplitude of the fundamental two-dimensional component, Al/" 0 is the

anplitude of its subharmonic or pairing mode, and A,  is the amplitude of the

11

primary three-dimensional wave with a spanwise wavelength equal to that of the

.
L]

¥The Revnolds numbers of the flows discussed below, while modest, are much
greater than that of the onset of linear instability (R,.jpy = &), so that
even the linear modes are effectively inviscid., 1In this case, damped modes
may lie only in the continuous spectrum (Drazin & Reid 1981) and so are
singular., Whenever equation (3.1) calls for such a singular contribution to
the initial condition (3.1), we choose instead the f{low component wun = Wiy
of the fundamental mode (with u, . and v determined by incompressibility).
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fundamental two-dimensionil mode. Time is n-ndimensionalized by L /6 and
space scales by 61' The initial co.uitions are typically chosen so that

A1/2,0' All << AlO' and AIO = 0.25. The Revnolds number for the undisturbed

flow is R = U_§./v.
071

In the absence of subharmonic and three-dimensional perturbations

Al/Z 0™ A11 = 0), the two-dimensionally perturbed flow quickly saturates to a
1]

quasi-steady state. In figure 1, a plot is given of the time evolution of the
two-dimensional disturbance energy Elo(t) for various initial amplitudes
AIO' The value for a is taken to be 0.4446, which is the wavenumber
corresponding to the largest growth rate predicted by linear theory (Michalke

1964). [The range of inviscidly unstable wavenumbers for the tanh z profile

is 0 €<a <1l.] Here

(-
- 2 R

Emn(t) = J/f Ivmn(z.t)l dz , (3.2)

-

where p
- ->
v (z,t) = E Sto,n,p,t) T (2) (3.3)
mn P
p=0

and u is defined by (2.4). 1t is appareAt that Ei saturates into a finite-
amplitude vortical state on a time scale of order 10. The independence of the
peak saturation amplitude to the initial excitation amplitude except for every
high initialiamplitudes, which is evident in figure 1, has alsc been observed

experimentally by Freymuth (1966). If we define the growth rate J as

o= (dE/de)/(2E) , (3.4)

.
I...
'~
s,
'}-
e
‘s
‘!
.
'
. !

then for linear disturbances of the form

v = Re[@(z)elalx-2t)y , (2.5)
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we have 0 = ac .. The peak growth rate of the most unstable linear mode
(a = 0,4446) is 0 = 0.19, Our growth rates, which are pgiven later in the tex:,
should be divided by a factor of 2 for comparison with the linear results for
aci given by Michalke (1964) to reflect the different choice of UO.

Figure 2 is a plot of the instantaneous spanwise vorticity distribution in
the developed two-dimensional flow for one of the runs shown in figure 1. Note
that while rollup is occurring by t = 8, in the absence of a subharmonic mode,
A1/2,0’ pairing does not take place, and the flow evolves into the nonlinear,
quasi-equilibrium state shown in figure 2b. This absence of pairing is analo-
gous to that artificially induced by upstream forcing in experiments by Miksad
(1972), Hussain & Zaman (1978), Oster & Wygnanski (1982), Ho & Huang (1982) and
others. In these experiments, the forced mode is amplified without also ampli-
fying its subharmonic. Thus, rollup of the forced mode is achieved without
pairing, creating a region in the flow characterized by large-scale, spanwise-
coherent, nonpairing modes. This produces countergradient momentum fluxes,
interruption in the growth of the mixing layer thickness, and a reversal in the
sign of the Reynolds stresses (Riley & Metcalfe 1980). That these phenomena
are also observed experimentally makes this nonlinear, quasi-equilibrium staze
of interest in analyzing the physics of the laboratory flows.

The saturated two-dimensional flow state discussed above can be unstable to

subharmonic Per:urbations, in (3.1), for suitable a (Keily 1967). 1In

A 2.0

figure 3, we plot the evolution of the subharmonic perturbation energies

EI/Q O(t) as well as the fundamental two-dimensional energy Ela(t)' Here we

- .

choose AIO = 0.25 and A./q 0" 3x10 . In figure 3, the phase difference 93
L ey

between the two modes is m/2Q, so that pairing occurs. Values of 5 other than
’ P

integral multiples of 7 result in pairing, while pairing is temporarily inhib-

ited when 8 is near Nm, with N an integer., The cases 22 N7 ar» anomalous,
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resulting in the "shredding interaction” (Patna.« et al, 1974, which 1s rare v

seen experimentally.? This subharmonic instability of the saturated two-
dimensional vortical states is inviscid in character, as its growth rate asymp-
totically approaches a finite limit as R increases. The growth rate 01/2'0

of the amplitude of the subharmonic mode is quite significant; at R = 200,

2 0.1 when @ = 0.4 while © £ 0.2 for a = 0.8. These are not signi-

%1/2,0 1/2,0
ficantly different from the corresponding linear inviscid growth rates of
Orr-Sommerfeld modes (Michalke 1964), which are 01/2’0 = 0,14 and 0.19,
respectively,

The evolution of the spanwise vorticity distridbution during pairing insta-
bility is shown in the contour plots in figure 4 (from Riley & Metcalfe 198C).
There is strong similarity between these figures and flow visualizarions of
mixing layers, such as those of Winant & Browand (1974). Note that in two
spatial dimensions, the lines of constant vorticity act as fluid markers zuch
like the dye used in experiments. The evolution of the pairing process is

strongly dependent on the relative initial ampiitudes of the unstable zocdes.

When A the fundamental mode rolls up first due to its higher

1/2,0 - A0

growth rate and shorter saturation time scale. The subharmonic gontinues grow-
ing after the fundamental saturates, during which time the vortex cores gener-
ated by the rollup of the fundamental are merged into the subharmonic core. In
this simulation (figure 4), the subharmonic mode Al/:. will become saturated
after about t = 24, since there is no second sudbharmonic mode (AI/&,O) with

which it can pair. .

+ See Rilev & Matcalfe (1930) or Ho & Huerre (1324, p. 382) for additiunal
plots and a more detailed Jdiscussion of phase differences. ‘

ST e e T N N e e e T T T S
T S A . R ; e . PO P I I i L L T
et da e Ba A 5 A S S RN T S L S P R ) P PR PR TR AT e I D T I




),

Ty SIS

R ]

< ‘-'-":-':--'-.-f:.{.'-'-.q" &

PRV TS .

MRS IR WG R T

13-

Some insight into the dvnamics of this process can be pained from comparing
figures 4 and 5. Figure 5 is a series of velocity vector plots at the same
times as those in figure 4, At t = 8, the vortical motion of the fundamental
cores dominates the flow and there are four nodal points: two at the centers
of the vortex cores and two stagnation points at the centers of the braids. By
t = 24, the vorticity peaks corresponding to the fundamental are still present
(figure 4c), although they are no longer as dynamically significant as earlier
(cf. figures Sa and S5c). At this point, there are basically two nodal points
in the flow: one at the center of the subharmonic core and the other in the
region of high strain at the center of the braid. By t = 32, the subharmonic
mode has saturated and the vortex core collapsed into a quasi-equilibrium,
nonlinear state like that for the unpaired fundamental (figure 2b).

The importance of the pairing process to the dynamic evolution of the flow
is clearly demonstrated by examining plots of the Reynolds stresses (figure 6).
From the dynamic equation for the integrated mean kinetic energy EM’

in/a
d—I':-‘\ia N = (3.6)
dt oz
(neglecting viscous effects), it can be seen that a positive Revnolds stress
implies gradient momentum transport (since %U/3z > 0) and a feed of energy
from the mean flow into the perturbation field, while negative Reynolds stress

produces countergradient momentum flux and feeds energy from the fluctuations

back into the mean. During the early stages of pairing, the Revnolds stress is

predominantly positive. However, by t = 24 (figure 5¢), large negative raoglions
(denoted by dashed lines in the figures) have developed, and by t = 32
(figure Hd), the Revnolds stress has become predominantlv nejative., The

relevance of the pairing mode is summarized in the results presented in
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figure te. Without the subharmonic pairing mode, the Reynolds stress changes

sign by t = 16, With the subharmonic present, however, the net Reynolds stress

is still positive at t = 16. Thus, the suppression of pairing, whether caused
by forcing, as in laboratory experiments (Hussain & Zaman 1978; Oster &
Wygnanski 1982; Ho & Huang 1982), or by eliminating the subharmonic mode, as in

the numerical simulations, is associated with a reversal in the sign of the

Réynolds stress.

This phenomenon is apparent in figure 3, in which the energy in the funda-

mental, E,., reaches saturation by about t = 10. At this point, the Reynolds
10

stress changes sign, and a countergradient momentum flux develops. 1In the

absence of other disturbances, this flow will then evolve into an oscillatory

state characterized by an alternating energy exchange between the mean flow and

the perturbation fields.

In terms of turbulence models, the presence of pairing is essential to

maintain the positivity of transport coefficients (such as eddy viscosity).

Since the eddy viscosity, veddv’ is related to the Reynolds stress by

— 50
-uw = veddy = (2.7

it follows that suppression of the pairing corresponds to a negative eddy

viscosity., This suggests that accurate simulations of flows with inhibited

pairing may require the direct calculation of large-scale stru.tures.
The energetics of the pairing instability is revealing. Energy transfers

L]
to and from the subharmonic mode may be decompcsed as

dE
1 20 (3.3)
= = .}.3
2E, ac C T Y T Yy
2,0 3
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where Y” involves the nonlinear interaction of the subharmonic mode with the
mean flow, YZD the nonlinear interaction of the subharmonic mode and all

other two-dimensional modes, and Yy, the viscous dissipation of pairing energy.
Here Yy and Yop involve sums over nonlinear terms in the Navier-Stokes
equations but are unaffected by pressure; Yy is proportional to the enstrophy
in the subharmonic mode. 1In figure 7, a plot is given of these transfer terms
as a function of time. It appears that the subharmonic mode extracts most of
its energy from the mean flow and that there is little net energy transfer
between it and the fundamental mode. 1In addition, its average growth rate
differs little from that in the absence of the fundamental, which is ¢ = 0.14.
Thus, the presence of the saturated two-dimensional fundamental does not turn
off the subharmonic mode, and the growth rate of this latter mode is close to
that of the fundamental two-dimensional instability. These results imply that
even a small subharmonic perturbation will quickly achieve finite amplitude
after the fundamental mode saturates, unless the amplitude of the fundamental
is artificially amplified by forcing. In this simulation, the subharmonic mode
saturates at t = 90 at which time the growth rate becomes negative. It

should be noted here that in attempting to compare these results for growth
rates of the fundamental and subharconic modes with experiments, it is nec;s-
sary to account for the dispersion of the subharmonic modes (cf,, for example,
€igure I% in Ho & Huerre 1984), which is present in the spatially growing but
not in the temporally growing mixing layer. Also, in comparing these zrowth
rates with those predicted by 12near theory, the growth of momentum thickness

of the mixing layer over the course of the simulation should be taken int>

consideration.,
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Corcos & Sherman (1984) find that the presence of the fundazmental inliblcs
the subharmonic growth, while Plerrehumbert & W{dnall (1982) find an enhance-
ment of growth. We find that the growth rate of the subharmonic is modulated
with a perlod related to the oscillatlion time scale of the nonlinear, quasi-
equilibrium fundamental mode. However, the net effect on the growth of the
subharmounic due to the fundamental 1s to decrease 01/2’0 slightly, from
about 0.16 to 0.14. While these conclusions do agree with those obtalmed by
Kelly (1967) using perturbation theory, they show that the effect 1s quite

small.

4, Three-dimensional instabilitles

The saturated two-dimensional flow is also subject to three-dimensional
instabilities. While the laminar mean flow is inviscidly unstable only for
az + 82 < 1, the finite-amplitude two-dimensional flow can be unstable for

large 8 at high Revnolds aumbers., In figure 8, we plot the average three-

dizensional growth rate °3D versus 3 of the three-dimensional disturbance

533-2 (8 , (4.2)

for various Reynolds numbers when & = 0,3 for a three-dimeasional linpear

energy,

perzurbation to a saturated, two-lizeasicnal juasi-ejuilibriua flow. Analvsis

-

of these results suggests the conjectures that, as R increases, for a fixed 3,

L4
RN

1p approaches a finite limit (30 the secoundary Instabilitv discussed Is

inviscid in character) and that the instablltezw turns off for
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Although the mean flow tanh z is both viscously and inviscidly stable for

A > 1, the saturated, two-dimensional disturbed flow is strongly unstable at
these scales, with disturbances growing at rates near those of the inviscid
two-dimensional fundamental instability, as shown in figure 9. When the two=-
dimensional modes saturate, the three-dimensional modes can achieve finite
amplitudes on convective time scales and thereby modify significantly the later
evolution of the flow.

Like the two-dimensional modes, the three-dimensional modes evolve into
vortical states at large amplitudes. Typically, these are counterrotating,
streamwise vortices, or "ribs'", that develop in the braids between the two-
dimensional vortex cores. In figure 10, we show a three-dimensional perspective
plot of surfaces having a value of 502 of the peak of the sum of the absolute
values of all three vorticity components. The data are from a simulation with
= 0,22, A

0 = 0,003, R = 28, a = 0.4446, and B = 0.8892 at

410 1/2,0 = % A
t = 12, The saturated, two-dimensional vortex cores are shown spanning the
domain, and the two pairs of counterrotating, streamwise vortices (3 = 2,
which have evolved from a low-amplitude, linear perturbation, have developed in
the high-strain braid region. These are very similar to the structures seen
experimentally by Breidenthal (1981) and Bernal (1981) and modeled by Lin &

Corcos (1984); they will be discussed in more detail in §5. In this and subse-

quent simulations, the choice ¢ = 71/2 'equation (3.1)] was made. The choice

i

¢ = N7 appeared to produce anomalous behavior in the evolution of the ribs,

=
.

somewhat analogous to the two-dimensional shredding interaction when 8 = N,

The cutoff as 3 + 4 (4.2) is ma.nly due to increasing viscous damping,
-

rit

as nonlinear transfers vary less rapidly with 8. This point is suggested Dy
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the results plotted in figure 11, where we plot the contributions to the growth

rate 03D

dE
32 (4.3)
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Here Yy involves the nonlinear interaction of the three-dimensional and mean
flows, and 720 the interaction of the three-dimensional and two-dimensional
energy. The jitter in the plots is due to numerical inaccuracy in the evalua-
tion of the nonlinear transfer terms, so only the trends in the data should be
considered significant. It is suggested from the data in figure lla that, for

< acric' Yy, and Yop << Y asymptotically so that the three-dimensional mode
derives its energy from the mean flow with the two~-dimensional disturbance
acting as a catalyst for this transfer.

On the other hand, the results plotted in figure 1lb show that when

B =8 Yy is quite significant. The three-~dimensional instability seems to

crit’
be turned off at a large cross-stream wavenumber 8 by increased dissipation
rather than by any significant qualitative change in nonlinear transfers from

the mean and two-dimensional components,

:‘.'

The nature of the competition between two-dimensional pairing and thrze-
dimensional instability is illustrated by the results piotted in figures 12 and
13. In both figures, we have plotted the results of runs with R = 400, a= 0.4,
and B = 0.2." Figure 12 shows the evolutisn of the instabilities when the
initial three~dimensional perturbation is much larger than the subharmonic
mode. In this case, the pairiné instability is nearly unaffected by the three-
dimensional instability before finite amplitudes are rezched. 1In {igure 13,

the initial conditions are chosen so that the subharmoni:z mode perturbation 1is

much larger than that of the three-dimensional perturbation; 1t seems that the
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pairing process and rollup inhibit the three-dimensional instability near

t = 72, where Cq actually becomes negative. Note that the growth rate of

D

ESD is identical for the two cases (figures 12 and 13) until A reaches

1/2,0

finite amplitude.

5. Instability: Dependence on initial conditions

The flows that develop from the three-dimensional secondary instability do
not appear to saturate in ordered states like those of the fundamental and
subharmonic two-dimensional instabilities. However, the presence of additional
pairing modes can significantly enhance the overall coherence of the flow.
Experiments have shown that extremely low levels of forcing can generate
changes in the flow of order 1 (e.g., Gutmark & Ho 1983). This has raised
concerns that unintended forms of weak excitation due to natural resonances in
an experimental apparatus, or pressure feedback effects, could be modifying the
evolution c¢f the flow field (Hussain 1983b). An important difference between
our numerically simulated temporally growing flows and the spatially growing
flows in laboratory experiments is that influences of downstream events on the
earlier stages of evolution are possible in the latter but not the former.

In figure l4a, we plot results that show the effect of the absence of a
subharmonic pairing mode on the evolution of the modal energies. In the
absence of the subharmonic, the fundamental quickly rolls up, a process that
inhibits the growth of the low-amplitude three-dimensional disturbance. Once
the fundamengal reaches its saturated quasi-equilibrium state (t = 20), the
three~dimensional modes resume their rapid growth. By about t = 50, the three-
dimensional modes dominate the flow field. The perspective plot given in
figure 14b shows this domination even at later times. Further growth of the

three-dimensional perturbation energy is inhidbited by the collapse of the mixany

S T T T et e e
S L A R
T S T L S e VO




-

-v.v

LA

-0~

laver due to the absence of the subharmonic. With the subhirmonic present, the
evolution of the three-dimensional modes is draratically different. The
results plotted in figure l4c are from a simulation identical to the previous
one except for the inclusion of the subharmonic mode. The three-dimensional
modal growth (at amplitudes in the linear range) is now slowed both by the
fundamental rollup (t = 5-10) and by the subharmonic pairing (t = 20-35).

Thus, the flow is more coherent than in the absence of the subharmonic (compare
figures 14b and 14d). Once the subharmonic reaches its saturated state

(¢ = 35), the three-dimensional growth rate increases substantially.

As was pointed out in §4, the two-dimensional and three-dimensional
unstable modes grow at very similar rates when all disturbance amplitudes are
in the linear range. In figure 15, we plot the results of a simulation in
which both fundamental and three-dimensional modes were introduced at approxi-
mately equal amplitudes, well down into the linear range. In this case, the
three-dimensional mode disrupts the rollup and saturation of the fundamental
mode, so that its peak amplitude is an order of magnitude smaller than without
the three~dimensional mode present. As shown in figure 15b, the presence of
the large three-dimensional instability substantially reduces the spanwise
coherence.

To determine whether the model used to initiate the three-dimensional
instabilities.in the simulations described thus far was rea.istic, we performed
several simulations initialized with a broad range of three-dimensional modes.
We used an uncorrelated, random-phase velocity field having a Gaussian-shaped
energy spectrum. This field was convolved with a function so that the relative
turbulence intensity levels were consistent with those of experimental mixing

layer data. However, the initial peak intensity leve! was about 3 orders of
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magnitude below the experimental values, so the initial disturbance growth was
in the linear regime,

In figure l6a, we plot the evolution of the flow field with broad-band
initial excitation. Neither fundamental nor subharmonic two-dimensional linear
eigenfunction modes were explicitly included in the initial conditions, although
there was energy in the corresponding wavenumbers defined by the random ini-

tialization process. Nonetheless, E.. and E grow very rapidly imitially,

10 1/2,0

= 0.13 at t = 10 (compared with © = 0,19 and

with 010 = 0.11 and 01/2’0 1/2,0

%0 " 0.14 for linear inviscid modes). EZ’ which is the energy in all velocity
components not having ky = 0, has a growth rate of U3D = 0.12 at t = 10, When
the modal components of Ey reach finite amplitude (at t = 35), %p decreases

sharply and the flow field is characterized by a chaotic, turbulent-like velo-
city field in the center of the mixing layer (figure 16b). The flow remains in
this chaotic state until the subharmonic reaches nonlinear amplitude and begins
to roll up. As the subharmonic reaches its saturation amplitude (¢t = 90),

the nature of the three-dimensional velocity field evolves from a highly chactic
state to one with coherent, large-scale structures {(compare figures léb and
16¢c), although %p remains approximataly constant. Thus, there is a complex
interaction between the two- and three-dimensional instabilities. The coherent,
two-dimensional modes significantly enhance the growth of the mixing layer
thickness, creating a larger region for the ultimate expansion of three=
dimensional instabilities. During their rollup and pairiang processes, however,
the coherentJ two-dimensional modes tend to reduce significantly the growth
rates of the low-amplitude three~dimensional modes.

The inhibition of the three-dimensional modal growth rate by the rollup and

pairing of the two-dimensional modes 1s a function of both the amplitude and
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the wavenumber of the three-dimensional modes. For low-amplitude three-
dimensional modes, in the linear range, coherent rollup or pairing can actually
be stabilizing. 1In figure 17, we plot the evolution of the modal energies as
functions of time for a simulation with the same initial conditions as in

figure 16 but with A = 0,0014. As seen in this figure, when the funda-

1/2,0
mental and subharmonic reach nonlinear amplitudes (t = 25), the three-
dimensional growth is stopped completely. At higher three-dimensional modal
amplitudes, however, the rollup may have little or no effect on O3p* For

example, in figure 1l6a, changes very little in the presence of the

%p

saturating subharmonic between t = 60 and 100. During the three-dimensional

stabilization shown in figure 17, the low 3 modes continue to grow while the

high 8 modes decay. This is not unreasonable, since as the scale of the amixing
layer grows due to the two~dimensional pairing, the relative scale of the
spanwise instability also changes. As shown in figure 8 for three-dimensional
perturbations to two-dimensional saturated modes, 93p depends strongly on

B. A similar effect is seen for EZ in the nonlinear range in figure 1l6a.

This would perhaps be manifest in the formation of larger ribs after the pair-
ing of the two-dimensional modes. .One mechanism that may have a significant
influence on the suppression of the three-dimensional modal growth is the
temporal variation of the strain field in the braids between the coherent,
two-dimensional vortices. In the early stagaes of rollup, a very high strain
develops in the braids. This has a tendency to stretch the ribs, intensifying
the streamwise vorticity. As the t;o-dimensional modes approach saturation,

however, the strain rate decreases substantially, so that this vortex stretch-

ing mechanism is weakened.




6. The secondarv instability in a turbulent flow

We have performed high-resolution (64xb64xh4 mode) simulations of a fully
turbulent mixing layer, and it is instructive to relate the evolution of these
flows to the class of instabilities discussed so far. These simulations were
performed on a computational domain sufficiently large to allow two complete
pairings (periodicity length 8n/a). The initialization procedure was
similar to that discussed in §5, but the amplitudes of the initial fields were
higher. Details of the numerics are given in Riley, Metcalfe & Orszag (1985).

The spanwise vorticity field after two complete pairings shows clear
evidence of large-scale structures (see figures 18a and b). A comparison of
the vorticity plots at two different spanwise locations indicates a strong

spanwise coherence for this particular realization, although details of the
structures are different. As previously noted, the secondary instabilities in
the mixing layer flow are characterized by streamwise, counterrotating vortices
that tend to form in the braids. Figure 19 is a contour plot of w, in a

plane at the middle of the mixing layer (z = 0). The solid and dashed lines
indicate positive and negative vorticity, respectively. Figure 20 is a similar
plot at a streamwise location B/4 from the left boundary in figure 19. These
two plots clearly indicate the presence of such vortices, although they are |
irregularly spaced.

One of the best laboratory visualizations of coherent, three-dimensional
structures in a turbulent nixing layer was performed by Bernal & Roshko (cf.
Bernal 1981): Using laser fluorescein dye techniques, they were able to
illuminate the flow at a fixed streamwise location. The most striking
characteristic of these photographs is the appearance of mushroom-shaped
features on the braids between the two-dimensional vortex cores (figure 2la).

We have been able to simulate this technique by empleving a aumerical code
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developed to study a chemically reacting mixirz layer (Riley et al. 1335) in
which the advection difiusion equations for a binary chemical reaction are solved
along with the Navier-Stokes equations. Figure 21b 1is a contour plot of the
concentration of one of the chemical species on the same plane as in figure 20,
and figure 2lc corresponds to the concentration of the other chemical species,

A comparison of figures 20 and 21b shows that the counterrotating vortex pairs

tend to pump fluid through the braid between their cores, increasing the reac-

tion surface area and creating the mushroom shaped structures in the flame
front, which is defined by the region of overlap between figures 21b and 2lc.
Such features were also noted in the model proposed by Lin & Corcos (198%).

The structure of the streamwise, counterrotating vortex tubes is made
clearer by isolating the streamwise vorticity component of the flow. Figure 22

is a three-dimensional perspective plot of surfaces at which lu&l equals

50% of its peak value. This figure was from the same realization and at the
same time as figures 18-21, The large-scale, spanwise-coherent structures do
not show up in this plot since they consist mainly of spanwise vorticity,

wy. Comparison with figures 18a and 18b shows that the ribs do form on the
braid between the large-scale two-dimeasional vortex cores. This structure is
consistent with the model proposed by Bernal (1981) although the irregular
spacing of the ribs suggests that the modification of this model proposed by
ussain (1983a) {s more realistic., The effec: of increased coherence of the
two-dimensional pairing modes on the rib structure is shown in figure 23, which
is from a simulation like the préviéus one but to which two-dimensional modes

have Yeen added in the initial conditions: A = 0.1, = 5,06,

1
AO

A /2,0

AI/& 0" 0.025 [equation (3.1)]. The resulting ribs are more coherent and
*

more aligned in the streamwise direction. As was the case with the simulation

Y W

]

in figure 1h, the presence of the pairing mode tends to increase the coherence

of the three-dimensional perzurbation {ield,
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The extreme sensitivity of the ribs to the initial or upstrean flow
conditions makes direct quantitative comparisons between the gsimulations and
laboratory experiments difficulet. In the simulations we have performed so far,
there have been significant variations in the amplitudes and spanwise spacing
of the ribs. Likewise, in the experiments of Bernal (1981), there was
substantial scatter in the measurements of the rib spacing. In addition, he
found that the spanwise position of the ribs appeared to be related to
disturbances originating upstream in the settling chamber., Our stability
analysis (figure 8) has shown that there is a broad range of spanwise
wavenumbers that are unstable. Some representative values for the simulation
shown in figures 18-22 are as follows: the peak spanwise vorticity normalized
by the peak mean velocity gradient is about 2, while the peak streamwise
vorticity is slightly higher, about 3. The spanwise vorticity amplitudes are
consistent with filtered experimental data (Metcalfe, Hussain & Menon 1985),
while the streamwise vorticity amplitudes are somewhat higher than in other
runs. The rib spacing (estimated from figure 19) is about the same as the
wavelength of the most unstable fundamental two~dimensional mode. This is in
the range of values reported by Bernal (1981). A more detailed analysis of
these simulations, using experimental data to refine these comparisons, is now

in progress.

7. Discussion

We have shown that small-scale three-dimensional instabilities like those
previously studied by Orszag & Patera (1980, 1983) and Pierrehumbert & Widnall
(1982) exist in free shear flows and that these instabilities persist to
moderately low Reynolds numbers. It is row clear that these modes can be

recsronsible for the initial development of threc=dimenso nality in these shea:
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flows. The dynamics of these three-dimensional instabilities 13 similar t,

that of the three-dimensional instabilities 13 wall-bounded shear flows. At
high amplitudes, these instabilities manifest themselves mainly as counter-
rotating, streamwise vortices, or ribs, that form on the braids between the
spanwise-coherent, two-dimensional pairing modes; they are responsible for the
generation of the mushroom-shaped features seen in laboratory experimental
visualizations (Bernal 1981). While the instabilities share some features of a
classical inflectional instability, including phase locking with the funda-
mental vortex, inflectional instabilities are preferentially two-dimensional,
whereas the present instabilities are not,

The rollup and pairing of the two-dimensional modes has a stabilizing
effect on the higher spanwise modes and on the overall three-dimensional growth
rate when the amplitude of the three-~dimensional modes is small, while the
absence of pairing (saturation) can enhance the three-dimensional growth rate.
However, in the absence of pairing or rollup, the three-dizensional instabil=-
ities can reach a chaotic, saturated state from which significant further
growth 1s not possible without additional pairing. The suppression of the
low-amplitude three~dimensional instabilities by pairing could explain the
strong two-dimensionality of the flow near the splitter plate in many labora-
tory experiments. Once the three~dimensional modes reach a finite amplitude
and/or the Reynolds number increases with downstream distance, tnhe growth

suppressicn effect is reduced, and the flow “ecomes mcre three-dimensional.

(8]

Mixing can be enhanced initiaily by ccherent forcing of the mixing layer to
saturation (Hussaln & Zaman 1978; Oster & Wwvznanski 1332; Yo & Huang 1982),

which will enhance the growth of the three-dimensional modes to a chactic

state. But this is done at the expense2 of reducin; the growth of the =mixing

laver mementum thickness, which 1s due rrimaril: to the pairing process.  Thas,
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the maximization of prduct formation tn a reasting mixing laver will requor.
balancing the increases in the flame {ront area renerated by the chaotic
three-dimensional flow with the increases due to the more rapid mixing laver
growth caused by the presence of additional pairing modes,

The results of these simulations suggest that, with respect to the growth
of three~dimensional disturbances, there are several important flow states
possible in an evolving mixing layer. First, there is pairing and rollup of
the two-dimensional modes, which is characterized by a suppression of low-
amplitude three-dimensional modal growth at low Reynolds numbers. Second,
there is the saturated, two-dimensional, quasi-equilibrium, non-pairing sta:ce,
which is highly unstable to three-dimensional perturbations. Finally, there
are chaotic, three-dimensional states characterized by a lack of spanwise
coherence from which only moderate three-dimensioral growth can occur. It 1is
from these states that more rapidly growing, large-scale, two-dimensional zodes
can eventually emerge and reorganize the flow in a manner consistent with that
suggested by Staquet & Lesieur ([1986).

It seems that the mechanics of transition in the free shear flows studied
here mav, in a sense, be rather more comp}icated than in the case of wali-
bounded shear flows. 1In the latter case, linear instabilities are often
viscously driven and, therefore, weak, so they cannot be directlv responsible

for the rapid distortions characteristic of transiticn. On the other hand,

O

free shear {lows are subject to a varietv of inviscid instabilities, so thera
may be many paths to turbulence. w} have shown that the choice of raths in an-
individual flow may depend »n the results of cernetition between funda--nz-.l,
subharmonic, and three-dimensional instabiiities, ail of which ara convestivelw
driven and, therefore, strong with comparable ur-weh rates.  Thus, the ov-lo-

ion of free shear flows 1n transitional ronime s depends sigiiiioant iy oot

N, . L

e




':D"

past history of the flow, including tue celative azpiitudes ol als

modes, the mechanism of their generatlon, anl Iie external environment

the flow is embedded.
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Table 1. Crowth rates (Im ¢) of the Orr-Sommerfell eigenfunctions
for the mixing layer Ug(z) = Uy tanh (24t

x-wavenumber a

0.25 0.5 0.75

Number of Chebyshev Polynomials (P+l)

L 17 33 65 17 33 65 17 33 65

Hyperbolic Map (2.5)

5 1.534 1.375 1.238 0.579 0.501 0.457 0.160 0.150 0.150
1 0.959 0.820 0.746 0.383 0.360 0.351 0.141 0.138 0.137
2 0.635 0.614 0.605 0.344 0,342 0.342 0.137 0.137 0.137
4 0.612 0.598 0.597 0.324 0.342 0.342 0.0%1 0.136 0.137
8 0.539 0.597 0.597 0.115 0.322 0.342 S ° 0.045 0.136
6 0.202 0.526 0.596 St+ S 0.321 S S 0.046

Algebraic Map (2.6)

0.5 0.699 0.588 0.599 0.345 0.346 0.342 0.131 0.138 0.137
1 0.591 0.599 0.597 0.344% 0.342 0.342 0.137 0.137 0.137
2  0.600 0.597 0.597 0.342 0.342 0.342 0.136 0.137 0.137
& 0.597 0.597 0,597 0.325 0.342 0.342 0.371 0.136 0.137
8 0.542 0,597 0.597 0.009 0.322 0.342 S 0.043 0.136

T Here the Reynolds number is Und;/v = 100 and the eigenvalue is the complex
wave speed ¢ for a temporal mode of the form Y(z)ei®(X=ct)  For the most
rapidlv growing mode listed here, Re(c) = 0.

++ S indicates that all modes are stable with the indicated parameter values.
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Figure Captions

FIGURE 1. A plot of Elo(t) versus t for runs with AX/Z,O = A11 = 0 and
Ajg ™ 0.5, 0.25, 0.125, 0.01. Here the Reynolds number is
R = 400, the spectral cutoffs in (2.4) are M = 8, N =1, P = 32
(resolution 8x1x32 with no subharmonic wmodes), the x-wavenumber is
@ = 0.4, and the time step is At = 0.02., Note that the flow
saturates into a vortical state nearly independent of the initial
perturbation. Before such saturation occurs, the perturbation

grows linearly like an Orr-Sommerfeld eigenfunction.

FIGURE 2. Contour plots of spanwise (y) vorticity for the mixing layer at
t =8 and t = 32 with R = 83, A -0,A10=0.2,
M=P =464, and N = ],

1/2,0

FIGURE 3. Plots of the evolution of Elo(t) and the two-dimensional
subharmonic mode energy EI/Z,O(t)' Here R = 400, AIO = 0,25,
Ayjgo = 31070, M =8, N=l, P=32 a=0.5, 8 =0.02,
and § = n/2q (phase difference between the two modes).

FIGURE 4. Spanwise vorticity contours at t = 0, 8, 16, and 24, during a
vortex pairing run with R = 83, AIO = (0,20, AI/Z,O = 0.14,
M =64, N=1, P = g4 (resolution 64xlxbs), a = 0,4446,
At = 0,05, and 8 = 7/2a.

FIGURE 5. Velocity vector plots of the vortex pairing run shown in figure 4.

FIGURE 6. (a = d) Plots of the Reynolds stress at different times for the
runs with both fundamental and subharmonic present (figure 4).
(e) A plot of the Reynolds stress with and without pairing at

different times.
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R FIGURE 7. A plot of the components Y., Y,y Y, tsee (3.3)) of
i the growth rate 01/2'0 of Lhe ;ubnarmonic aode amplitude as
: functions of time for a run with R = 200, AIO = (0.25,
f Ayjao ™ 3x107°, M = 16, N = 1, P = 32, a = 0.43, and
N & = 0.01.
.
B FIGURE 8., A plot of the computed three-dimensional growth rate %p [see
F (4.3)] as a function of the spanwise wavenumber B for various
& Reynolds numbers. Here a = 0.4.

FIGURE 9. A plot of the computed subharmonic growth rate % /2.0 and
’
three-dimensional growth rate O3p 35 & function of @ at

R = 400 and 8 = 0.8.

FIGURE 10. A three-dimensional perspective plot of surfaces having a value
equal to 50% of the peak of the sum of the absolute values of all
three vorticity components for a run with R = 56 (at t = 12),
M=N=pP= 64, a=0,4446, At =0.05, A 0" 0.22, A =0,

= 0,003, 8 =0.8892 at t = 12.

! 1/2,0

A1y

FIGURE 11. A plot of the compoments Y,, Yop Y, [see (4.3]] of the
three-dimensional growth rate O3p a8 functions of time for
R = 400, @ = 0.4, A, = 0425, &4,, = 102,

(a) 3 = 4,

(b) 3 = 6.

10 11

"y

IGURE 12. A plot of the evolution of the energies EIO’ EI/Z, , E3D
versus t for a run with R = 400, a=0.4, 3 = 0.2, M =8, N =4,
P = 32, and initial conditions A,, = 0.25, A = 3x10-6.
2 10 1/2,0
App = 10 7. The three-dimensional mode initially dominates the
subharmonic mode.
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Same as figure 12, except that the initial conditions are
- t
- =5 v .
A .= 0.25, A, = 4x19 A = 3.,3x10 7, Here, E = 10 x =
10 S WS S ©r 73D 2D

from figure 12. Note that the linear growth ot the three-dimensional

mode is stopped when the subharmonic reaches a nonlinear amplitude.

(a) A plot of the evolution of the modal energies as functions of

tine. ES = EOI + Ell + 521‘ i.e., the three lowest spanwise
modes with the same x-wavelength as the fundamenral. R = 100,

= 2 = EY -5 ‘
Q 0.'4[‘46, Alo 0.22' Al/z.o - 0. and All 10 . ‘

(b) A three-dimensional perspective plot of the vorticity field as
in figure 10 at t = 96,

1/2,0 = 0.14.
= 0.14.

1/2,0

{(¢) Same as figure 14a but A

(d) Same figure 14b but A

=3
0" 10-3.
10 © 10

(a) Sace

(b) Sane

figure l4a but A

figure 14b but A at t = 48,

(a) A plot of the evolution of the modal energies as functions of

tige. Ey = energy in all modes with ky # 0. R = 100. Random
noise initial field with peak rms velocity = 0.01.

(b) A three-dimensional perspective plot of the vorticity field as
in figure 10 at t = 48.

(¢) Same as figure 165 but at t = 96,

A plot of the evolution of the modal energies as functions of tize.

Ep = energy in all modes with ky # 0. R = 100,

, , D" 5
a = 0,4446, Alg = 0, Al/Z,O 2 0.0014, and All = 10 7,

Spanwise vorticity at y = 4n/a (figure 18a) and 671/a (figure 18b).
The computational domain‘size B i1s 8m/a. R = 1S4 and t = 72.
Random noise initial field with peak rms velocity = 0,13. The

irnitial Revnolds number 1s R = 28.
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FIGURE 19, Streamwise vorcicity at z = ) for the sa~» run as in {igure 13,

FIGURE 20. Streamwise vorticity at x = 27/a for the same run as in

.
§£ figure 18,

N

¥ FIGURE 21, (a) Laser sheet/fluorescein dye visualization of the braid of a
s turbulent mixing layer in water (from Bernal 1981).
ﬁ: (b) Contour plot of the species concentration field at the same
T: time and location as in figure 20.

3

(¢) Contour plot of the second species concentration field at the

same time and location as in figure 2lb.

FIGURE 22. Three-dimensional perspective plot of surfaces at which wal

equals 50% of its peak value for the same run as in figure 18.

FIGURE 23. Plot of iwxl as in figure 22 but for a simulation to which
two-dimensional modes have been added in the initial conditions:

Ajg = 0.1, Al/Z.O = 0,06, and AI/A,O = 0,025 [equation (3.1)].
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